p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.1C23, C24.5(C2×C4), C42⋊C2⋊5C4, (C2×D4).269D4, C23.9D4⋊3C2, C23.126(C2×D4), C23.64(C22×C4), C23.115(C4○D4), C23.34(C22⋊C4), C22.11C24.1C2, (C22×D4).11C22, C22.6(C42⋊C2), C2.16(C23.34D4), C22.2(C22.D4), (C2×C22⋊C4)⋊3C4, (C2×C23⋊C4).4C2, C22⋊C4.49(C2×C4), (C22×C4).17(C2×C4), (C2×C4).47(C22⋊C4), (C2×C22⋊C4).8C22, C22.36(C2×C22⋊C4), SmallGroup(128,560)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=c, g2=a, ab=ba, ac=ca, eae-1=ad=da, af=fa, ag=ga, bc=cb, gbg-1=bd=db, be=eb, bf=fb, fcf=cd=dc, ce=ec, cg=gc, de=ed, df=fd, dg=gd, fef=ade, geg-1=bde, fg=gf >
Subgroups: 380 in 148 conjugacy classes, 50 normal (10 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C23⋊C4, C2×C22⋊C4, C42⋊C2, C4×D4, C22×D4, C23.9D4, C2×C23⋊C4, C22.11C24, C24.C23
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C42⋊C2, C22.D4, C23.34D4, C24.C23
Character table of C24.C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | |
size | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | i | i | i | -i | -i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | i | i | -i | i | -i | -i | i | -i | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | -i | i | -i | i | i | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | i | i | i | -i | -i | -i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -i | -i | i | -i | i | i | -i | i | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | -i | -i | -i | i | i | i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | -i | -i | i | i | i | i | -i | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | i | -i | i | -i | -i | linear of order 4 |
ρ17 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ28 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ29 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(2 4)(5 8)(10 12)(14 16)
(5 8)(6 7)(13 15)(14 16)
(9 11)(10 12)(13 15)(14 16)
(1 3)(2 4)(5 8)(6 7)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 11)(2 10)(3 9)(4 12)(5 16)(6 13)(7 15)(8 14)
(1 7)(2 5 4 8)(3 6)(9 13)(10 16 12 14)(11 15)
G:=sub<Sym(16)| (2,4)(5,8)(10,12)(14,16), (5,8)(6,7)(13,15)(14,16), (9,11)(10,12)(13,15)(14,16), (1,3)(2,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,11)(2,10)(3,9)(4,12)(5,16)(6,13)(7,15)(8,14), (1,7)(2,5,4,8)(3,6)(9,13)(10,16,12,14)(11,15)>;
G:=Group( (2,4)(5,8)(10,12)(14,16), (5,8)(6,7)(13,15)(14,16), (9,11)(10,12)(13,15)(14,16), (1,3)(2,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,11)(2,10)(3,9)(4,12)(5,16)(6,13)(7,15)(8,14), (1,7)(2,5,4,8)(3,6)(9,13)(10,16,12,14)(11,15) );
G=PermutationGroup([[(2,4),(5,8),(10,12),(14,16)], [(5,8),(6,7),(13,15),(14,16)], [(9,11),(10,12),(13,15),(14,16)], [(1,3),(2,4),(5,8),(6,7),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,11),(2,10),(3,9),(4,12),(5,16),(6,13),(7,15),(8,14)], [(1,7),(2,5,4,8),(3,6),(9,13),(10,16,12,14),(11,15)]])
G:=TransitiveGroup(16,212);
(1 8)(2 7)(3 6)(4 5)(9 10)(11 12)(13 14)(15 16)
(1 2)(7 8)(13 15)(14 16)
(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 11)(10 12)(13 15)(14 16)
(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 15)(2 13)(3 11)(4 9)(5 10)(6 12)(7 14)(8 16)
(1 3 8 6)(2 4 7 5)(9 14 10 13)(11 16 12 15)
G:=sub<Sym(16)| (1,8)(2,7)(3,6)(4,5)(9,10)(11,12)(13,14)(15,16), (1,2)(7,8)(13,15)(14,16), (9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,15)(2,13)(3,11)(4,9)(5,10)(6,12)(7,14)(8,16), (1,3,8,6)(2,4,7,5)(9,14,10,13)(11,16,12,15)>;
G:=Group( (1,8)(2,7)(3,6)(4,5)(9,10)(11,12)(13,14)(15,16), (1,2)(7,8)(13,15)(14,16), (9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,15)(2,13)(3,11)(4,9)(5,10)(6,12)(7,14)(8,16), (1,3,8,6)(2,4,7,5)(9,14,10,13)(11,16,12,15) );
G=PermutationGroup([[(1,8),(2,7),(3,6),(4,5),(9,10),(11,12),(13,14),(15,16)], [(1,2),(7,8),(13,15),(14,16)], [(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,11),(10,12),(13,15),(14,16)], [(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,15),(2,13),(3,11),(4,9),(5,10),(6,12),(7,14),(8,16)], [(1,3,8,6),(2,4,7,5),(9,14,10,13),(11,16,12,15)]])
G:=TransitiveGroup(16,229);
(2 16)(4 14)(6 9)(8 11)
(5 12)(6 9)(7 10)(8 11)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(2 16)(3 13)(5 12)(8 11)
(1 7)(2 11 16 8)(3 5)(4 9 14 6)(10 15)(12 13)
G:=sub<Sym(16)| (2,16)(4,14)(6,9)(8,11), (5,12)(6,9)(7,10)(8,11), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (2,16)(3,13)(5,12)(8,11), (1,7)(2,11,16,8)(3,5)(4,9,14,6)(10,15)(12,13)>;
G:=Group( (2,16)(4,14)(6,9)(8,11), (5,12)(6,9)(7,10)(8,11), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (2,16)(3,13)(5,12)(8,11), (1,7)(2,11,16,8)(3,5)(4,9,14,6)(10,15)(12,13) );
G=PermutationGroup([[(2,16),(4,14),(6,9),(8,11)], [(5,12),(6,9),(7,10),(8,11)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(2,16),(3,13),(5,12),(8,11)], [(1,7),(2,11,16,8),(3,5),(4,9,14,6),(10,15),(12,13)]])
G:=TransitiveGroup(16,231);
(2 16)(4 14)(6 9)(8 11)
(1 7)(2 8)(3 5)(4 6)(9 14)(10 15)(11 16)(12 13)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 7)(2 11)(3 12)(4 6)(5 13)(8 16)(9 14)(10 15)
(1 3)(2 6 16 9)(4 8 14 11)(5 10)(7 12)(13 15)
G:=sub<Sym(16)| (2,16)(4,14)(6,9)(8,11), (1,7)(2,8)(3,5)(4,6)(9,14)(10,15)(11,16)(12,13), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,7)(2,11)(3,12)(4,6)(5,13)(8,16)(9,14)(10,15), (1,3)(2,6,16,9)(4,8,14,11)(5,10)(7,12)(13,15)>;
G:=Group( (2,16)(4,14)(6,9)(8,11), (1,7)(2,8)(3,5)(4,6)(9,14)(10,15)(11,16)(12,13), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,7)(2,11)(3,12)(4,6)(5,13)(8,16)(9,14)(10,15), (1,3)(2,6,16,9)(4,8,14,11)(5,10)(7,12)(13,15) );
G=PermutationGroup([[(2,16),(4,14),(6,9),(8,11)], [(1,7),(2,8),(3,5),(4,6),(9,14),(10,15),(11,16),(12,13)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,7),(2,11),(3,12),(4,6),(5,13),(8,16),(9,14),(10,15)], [(1,3),(2,6,16,9),(4,8,14,11),(5,10),(7,12),(13,15)]])
G:=TransitiveGroup(16,286);
(2 3)(5 8)(9 11)(13 15)
(1 7)(2 8)(3 5)(4 6)(9 13)(10 14)(11 15)(12 16)
(9 11)(10 12)(13 15)(14 16)
(1 4)(2 3)(5 8)(6 7)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 16)(2 15)(3 13)(4 14)(5 9)(6 10)(7 12)(8 11)
(2 8 3 5)(6 7)(9 15 11 13)(10 12)
G:=sub<Sym(16)| (2,3)(5,8)(9,11)(13,15), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16), (9,11)(10,12)(13,15)(14,16), (1,4)(2,3)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,16)(2,15)(3,13)(4,14)(5,9)(6,10)(7,12)(8,11), (2,8,3,5)(6,7)(9,15,11,13)(10,12)>;
G:=Group( (2,3)(5,8)(9,11)(13,15), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16), (9,11)(10,12)(13,15)(14,16), (1,4)(2,3)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,16)(2,15)(3,13)(4,14)(5,9)(6,10)(7,12)(8,11), (2,8,3,5)(6,7)(9,15,11,13)(10,12) );
G=PermutationGroup([[(2,3),(5,8),(9,11),(13,15)], [(1,7),(2,8),(3,5),(4,6),(9,13),(10,14),(11,15),(12,16)], [(9,11),(10,12),(13,15),(14,16)], [(1,4),(2,3),(5,8),(6,7),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,16),(2,15),(3,13),(4,14),(5,9),(6,10),(7,12),(8,11)], [(2,8,3,5),(6,7),(9,15,11,13),(10,12)]])
G:=TransitiveGroup(16,316);
Matrix representation of C24.C23 ►in GL8(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(8,Integers())| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0] >;
C24.C23 in GAP, Magma, Sage, TeX
C_2^4.C_2^3
% in TeX
G:=Group("C2^4.C2^3");
// GroupNames label
G:=SmallGroup(128,560);
// by ID
G=gap.SmallGroup(128,560);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,58,2019,718,2028]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=c,g^2=a,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,a*g=g*a,b*c=c*b,g*b*g^-1=b*d=d*b,b*e=e*b,b*f=f*b,f*c*f=c*d=d*c,c*e=e*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*e*f=a*d*e,g*e*g^-1=b*d*e,f*g=g*f>;
// generators/relations
Export